Hvorfor lugter spildevandet og hvordan kan vi modellere det?

Jes Vollertsen, Institut for Byggeri By og Miljø, Aalborg Universitet

Nobody (but us) loves the sewers

The public doesn't want to

- Know about them
- \blacksquare See them
- Smell them

BUT: The public wants their service, without interruption and fuss

THE WALL STREET JOURNAL

Residents Turn Up Noses at Sewer Stink Cure

Most San Franciscans have learned to live with foul sewer smells that come and go along the city's waterfront, Mission Bay and some other neighborhoods. But some residents are finding a growing effort by the city to combat the odors too objectionable to ignore.

Whether odor is an issue or not, depends on the quality of the neighborhood

(no taxi driver wants to pick you up where the San Francisco treatment plant is located …)

Consequences of sewer processes – asset corrosion

Corroding concrete manholes and metal covers

Consequences of sewer processes - odors

Sewer odor, even in very low concentrations (0.5 ppm H_2S)

Consequences of sewer processes - safety

Costly mitigation techniques

Addition of chemicals

Air filters

Get a grip on sewer process problems

The sewer as a reactor

- biological, chemical, physical processes

Biological and chemical processes take place in the wastewater, biofilm, sediments, and on moist sewer surfaces

Transport takes place in the wastewater and the gas

Sewer air interacts with the urban atmosphere as the sewer continuously takes in and pushes out air

Wastewater interacts with the treatment plants

Redox reactions in sewers

• Electron acceptors and corresponding conditions for microbial redox processes (respiration processes)

Organic substrate – the most important electron donor

TOC – Total Organic Carbon (70-250 gC m $^{-3}$)

• Combustion of organic matter coupled with a $CO₂$ measurement

 $\mathsf{COD-Chemical Oxygen\,Demand}\left(200\text{-}800\text{ gO}_2\text{ m}^{\text{-}3}\right)$

- Chemical oxidation of all organic compounds
- (+ some inorganic compounds).

BOD – Biological Oxygen Demand (150-500 gO $_2$ m $^{\text{-3}}$)

• Oxygen demand from partial breakdown of organic matter during 5 days (or 7 days)

Di-oxygen (O_2) – the terminal electron acceptor in aerobic processes

Where to find aerobic conditions?

- Gravity sewers
	- Where reaeration exceeds the potential oxygen uptake of the microorganisms in wastewater, biofilms and sediments
- The first few meters of force mains
	- If the wastewater of the pump pit is aerobic
- In force mains with air or oxygen injection
	- Air makes the force a pseudo-gravity sewer
	- Pure oxygen is dissolved in the wastewater

A case study of measuring oxygen in a sewer

Oxygen was measured continuously in an intercepting gravity sewer

- 1) A bag
- 2) A waterproof box with electrical equipment, datalogger and batteries.
- 3) A steel rod
- 4) A DO-meter
- 5) A float anchored by the steel rod held the DO-meter

17 Gudjonsson G, Vollertsen J, Hvitved-Jacobsen T (2002). Dissolved oxygen in gravity sewers – measurement and simulation. Water Science and Technology, $45(3)$, $25-44$

Diurnal variations in the DO concentration in station A (May 25 to June 1).

The effect of temperature on DO concentration

Nitrate $(NO₃⁻) - the$ terminal electron acceptor for anoxic processes

Where we find anoxic conditions

- Nitrate can come from
	- Inflow and infiltration
	- Industrial discharges
	- Injection to manage H_2S and odours
- Nitrate is NOT formed in the sewer
	- Ammonia cannot be oxidized to nitrate in sewer biofilms as the slowgrowing ammonia oxidizers loose the competition for oxygen to the fastgrowing bacteria that oxidize organic matter

Nitrate substitutes oxygen as electron acceptor

It is the same bacteria that do the work, they just switch from oxygen to nitrate

Anaerobic processes

Aerobic processes = High redox potentials

Sulfate (SO_4^2) – the most important terminal electron acceptor for anaerobic processes

Anaerobic sewer processes

Anaerobic conditions occur in

- Force mains of sufficient residence time
- Full-flowing gravity sewers of sufficient residence time
- Partly filled gravity sewers with poor or negative slope when temperatures are high, flow velocities low, and water depts large

Problems are typically perceived downstream of such anaerobic conditions

- Force main discharges
- **Syphons**
- Gravity pipes of poor slope

Relevant redox processes

Fermentation glucose ethanol $C_6H_{12}O_6 \rightarrow 2CH_3CH_2OH + 2CO_2$ acetic acid glucose $C_6H_{12}O_6 + 2H_2O \rightarrow 2CH_3COOH + 2CO_2 + 4H^+$ glucose propionic acid $C_6H_1, O_6 + 2H_2 \rightarrow 2CH_3CH_2COOH + 2H_2O$ propionic acid $CH_3CH_2COOH + 2CO_2 \rightarrow CH_3COOH + CO_2 + 3H_2$ glucose lactic acid $C_6H_{12}O_6 \rightarrow 2CH_3CHOHCOOH$ Methanogenesis acetic acid $CH_3COOH \rightarrow CH_4 + CO_2$ glucose $C_6H_{12}O_6 \rightarrow 3CO_2 + 3CH_4$ $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$ **Sulfate Respiration** lactic acid acetic acid $2CH_3CHOHCOOH + SO_4^{2-} + H^+ \rightarrow 2CH_3COOH + 2CO_2 + 2H_2O + HS^$ lactic acid

 $2CH_3CHOHCOOH + 3SO_4^{2-} + 3H^+ \rightarrow 6CO_2 + 6H_2O + 3HS^-$

Sulphide formation in sewers

Example: sulphide formation in a full flowing pipe

Factors affecting sulfide formation

The release of H_2S Why it does not want to stay in the water

A tiny bit of chemistry is needed to explain this:

Sulfide is a weak di-protic acid that dissociates as follows:

Only dissolved hydrogen sulfide, $H_2S(aq)$, can be emitted from the water

Thus, at constant total sulfide concentration the equilibrium concentration in the overlaying sewer atmosphere will be reduced with increasing pH

How pH affects the H_2S water/air equilibrium

Assume there is 1 mg/L dissolved sulfide Assume there is equilibrium

The practical consequence is that pH is highly important for how much H_2S goes into the sewer air

pH can be controlled by adding alkaline solutions such as magnesium hydroxide

How pH affects the H_2S water/air equilibrium

In this range, 7–39% of the dissolved sulfide in the water is present as H_2S I.e. the potential for H_2S -release is 5.6 times higher at pH 7.20 vs 8.15

A week in June (Sunday - Sunday) in 2021 - Inlet to an Aarhus WWTP

The release of H_2S why does it not want to stay in the water?

But: There is never equilibrium in a sewer system

Turbulence in the water allows H_2S to get into the air

Risk of H₂S gas release

 $_{\rm pH}^{7}$

9 10

8

pH

Concrete corrosion

• Processes

- Adsorption of H_2S and $O₂$ on moist surface
- H_2S is oxidized to sulfuric acid (H $_{2}$ SO $_{4})$
- The acid reacts with the alkaline components of the concrete

 H_2SO_4 + CaCO₃ (cement) → H_2O + CO₂ + CaSO₄ (gypsum) ³³

Corroding concrete – an extreme environment

Effect of pipe material

- Concrete, PE og PVC
- When using plastic pipe, the corrosion is mitigated, but what else happens? Concrete pipe

Effect of pipe material

- Concrete, PE og PVC
- When using plastic pipe, the corrosion is mitigated, but what else happens?

Primary gypsum

Effect of pipe material

- Concrete, PE og PVC
- When using plastic pipe, the corrosion is mitigated, but what else happens?

What pipe material does to sewer air H_2S

When concrete corrodes, it takes up the H_2S -gas

It hence is a sink for H_2S -gas

Sewers are quite complex systems

How to keep track of the chemical, physical, and biological processes within them?

Modelling helps understanding complex systems

A short history of sewer process modelling

Mega-WATS was developed by Jes Vollertsen, Mega-Vent by Matthew Ward Together Matthew and Jes founded The WATS Guys in 2020

A sewer process model must simulate all relevant in-sewer processes

A sewer process model must simulate mitigation methods

Sewer process modelling helps you getting a better grip on the problems

■ Assess

- ❑ Odor and toxicity impacts from the collection system
- ❑ Corrosion of the sewer assets
- ❑ Impacts on the treatment works

■ Manage

❑ Odors and hydrogen sulfide in the sewer network

■ Predict

❑ Future developments in the sewer network

Modelling San Francisco with Mega-WATS

It helps you to:

- **E** Manage complexity
- **Project into the Future**
- **Eldentify Treatment Alternatives**
- Screen Treatment Alternatives

Issues when modelling in-sewer processes

- **· High natural variability** in wastewater composition
- Model constants are not constant
- **. Impossible to know the** boundary conditions of the system

Mega-WATS What Mega-WATS includes

- Biological processes
	- ❑ Aerobic transformations (oxygen is present)
	- ❑ Anoxic transformations (nitrate is present, no oxygen)
	- ❑ Anaerobic transformations (sulfide, mercaptans, methane, …)
- **Chemical processes**
	- ❑ Oxidation
	- ❑ Precipitation
	- ❑ Wastewater buffer system: pH, alkalinity
- **Hydraulics**
	- ❑ Rout water and air through the network
	- ❑ Gas exchange with the urban atmosphere

EXAMPLE Management solutions

- ❑ Ferric Iron, Ferrous Iron, Hypochlorite, Hydrogen peroxide, Nitrate, Oxygen, Magnesium hydroxide, Sodium hydroxide, Forced ventilation, and more
- Stochastic modelling for extreme event statistics

Sewer processes are simulated by solving many coupled non-linear differential equations describing processes.

This is akin to the approach of Activated Sludge models, Anaerobic Digester models, and similar engineering process models

Each pipe is simulated, meter for meter

A simulation example – 215 m of gravity pipe with backwater

A large gravity main under a major road can be expected to collapse some decades after its construction, potential causing major traffic dioruption

An example of predicting remaining service life

An example of identifying H_{2} S gas release hotspots

Mega-WATS is fast

1632 km of pipes 33215 individual pipes 1-2 minutes simulation time on a decent laptop

1672 km of pipes 34282 individual pipes 1-2 minutes simulation time on a decent laptop

Air goes in and out of sewers all the time

Mega-Vent sewer ventilation modelling

Solves the momentum balance of the air flow Gives pressure and air velocities in all pipes

Forced ventilation – a common solution in many countries

Objective: Avoid foul air release to the atmosphere

- Fans extracting air are placed in the network
- Extracted foul air is treated and vented

Designing forced ventilation:

- Keep the area of interest in negative pressure (vacuum) relative to the ambient atmosphere
- When the sewers are in negative pressure, air can only Flow in not out $\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \$

