

Literature gennemgang for metoder for at øge den hydrauliske kapacitet under regn og praktiske erfaringer fra Spildevandscenter Avedøre.

Anitha K. Sharma

Postdoc

DTU Environment Department of Environmental Engineering

 $(H_{2}0+0_{2} \leq CO_{2}+H_{2}O_{a})^{a}$

Content

- Literature review on wet-weather control at Wastewater Treatment plant
- Practical experience from Avedøre Wastewater Treatment Plant

What is the effect of wet-weather on inlet

- Increased hydraulic loads
- First flush with concentration peaks; flow peaks, mass peaks
- Diluted concentrations
- Sudden drop in temperature in cold climate

Parameter	Unit	Range of parameter concentrations			
		Rainfall	Stormwater	Combined	Municipal
			runoff	wastewater	Wastewater
Total Suspended	mg/L	<1	67-101	270-550	120-370
Solids (TSS)					
Biochemical	mg/L	1-13	8-10	60-220	120-380
oxygen demand					
(BOD)					
Chemical	mg/L	9-16	40-73	260-480	260-900
oxygen demand					
Fecal coliform	MPN/100 mL		$10^3 - 10^4$	$10^5 - 10^6$	10 ⁵ -10 ⁷
bacteria					
Total Kjeldahl	mg/L		0.43-1.00	4-17	20-45
nitrogen					
Nitrate	mg/L	0.05-1.0	0.48-0.91		0
Total	mg/L	0.02-0.15	0.67-1.66	1.2-2.8	4-12
Phosphorous					
Lead, Pb	μg/L	30-70	30-144	140-600	

From Waste Water Engineering. Treatment and Reuse (2004). Tchobnoglous G. Burton, F, & Stensel H.D. McGraw -Hill; New York.

Maximum Hydraulic capacity

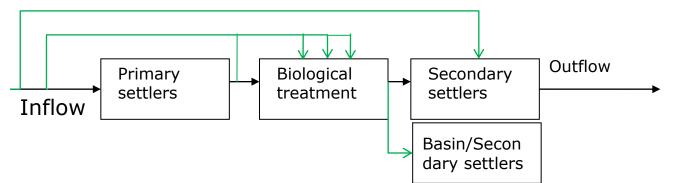
- The effluent of a WWTP is regulated based on 4 water quality parameters:
 - COD/BOD, TN/NH4-N, TP and SS
- The two most important factors deciding the available maximum Hydraulic Capacity during wet weather are:
 - Capacity of Secondary Clarifiers
 - Available nitrification/denitrification Capacity
 - Whereas the biological phosphourous removal capacity is compensated by chemical phosphourous removal
- In some countries (for example Germany) there are regulations on how much water is allowed to the WWTP.

Measures to Increase the Hydraulic capacity at WWTP

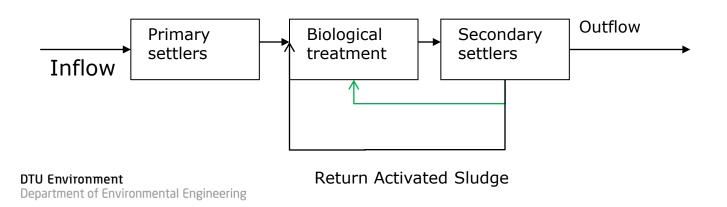
- Applicable both during dry/wet-weather:
 - Instrumentation and Online Control
 - Sludge Hydrolysis
 - Sludge age
 - Return activated sludge control
- During wet-weather:
 - Operational/process changes based on the existing facilities
 - Physical modifications and Construction of new facilities

Operational/process changes based on the [∓] existing facilities

- Water Storage Management
- Step feed Operation
- Step sludge Operation
- Control of Return activated sludge
- Addition of flocculants before the secondary settlers to increase the settling properties of the sludge
- Addition of flocculants before the primary settlers to remove the SS
- Aeration tank settling


Operational/process changes based on the existing facilities

- Water Storage Management
- Step feed Operation
- Step sludge Operation
- Control of Return activated sludge
- Addition of flocculants before the secondary settlers to increase the settling properties of the sludge
- Addition of flocculants before the primary settlers to remove the SS
- Bypassing preliminary settling and treatment to remove TSS
- Aeration tank settling

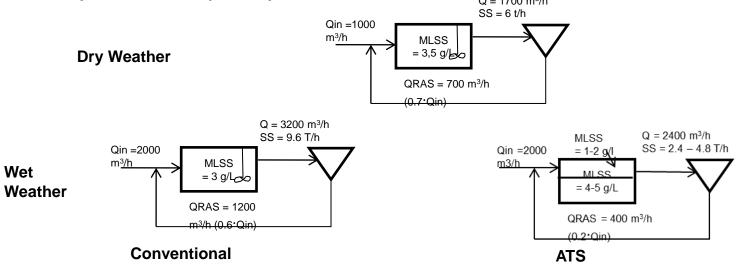


Step Feed & Step Feed Operation

Step Feed: Depending on the inflow characteristics the position of the feed is changed to the optimal position

Step Sludge: Depending on the requirements the position of mixing of return activated sludge is changed.

Control of Return Activated Sludge


Strategies for Control of Return Activated Sludge (RAS) flow rate are:

- Fixed RAS flow control
- Variable RAS flow control based on
 - Blanket level control
 - Settled sludge method
 - Solids flux theory

Aeration Tank Settling

 Settling is allowed in aeration tanks in order to decrease the solids load on the secondary settlers and hence increase the hydraulic capacity.

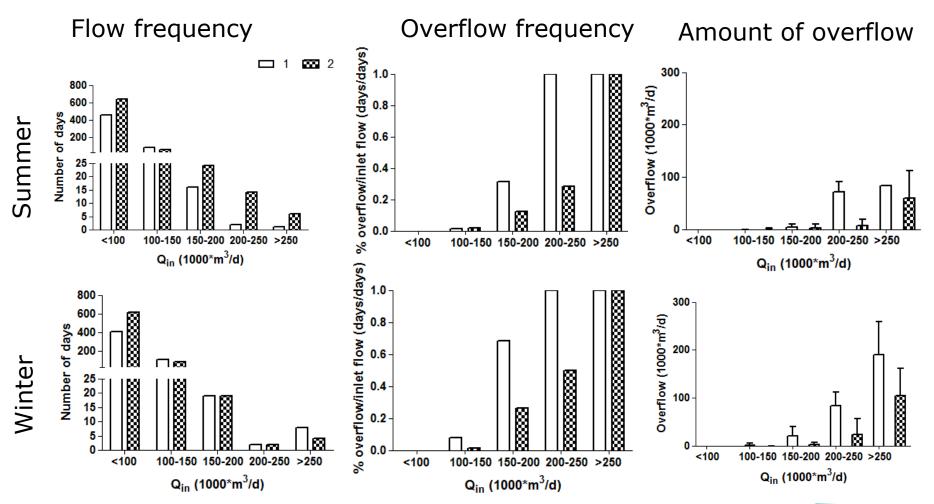
- Settling in aeration tanks
 - Less MLSS-concentration to settling tanks
 - Less flow to settling tanks
- Decreased sludge load to settling = increase hydraulic capacity

DTU Environment Department of Environmental Engineering

Sharma et al. (accepted). WS&T

Evaluating ATS and RTC at Avedøre

- Strategies:
 - Advanced online Control
 - RAS Control
 - Sludge age control
 - ATS
- Aim was to investigate the effect of ATS and RTC:
 - Hydraulic capacity
 - Treatment efficiency
 - SS, COD, TN, NH4-N, TP, Electricity consumption, Iron dosage
 - Differences between summer and winter operations
- Data:
 - 7 years data from full scale operation
 - Period 1: 3 years data without ATS and RTC
 - Period 2: 4 years data with ATS and RTC
 - Summer: May October
 - Winter: November April



Storm- and

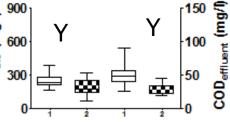
Wastewateı Informatics

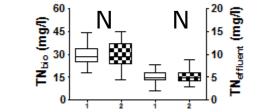
Hydraulic capacity

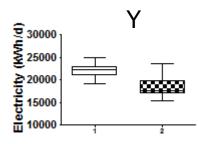
• Design capacity: Summer: 148,800 m3/d and Winter: 108,000 m3/d.

DTU Environment Department of Environmental Engineering

Treatment Efficiency (COD, TN Vs. Electricity consumption)

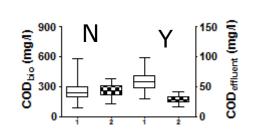

ΤN

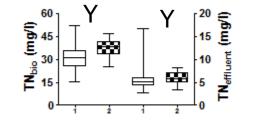

(v) 000 000 000 Y 000 000 Y 000 ↓

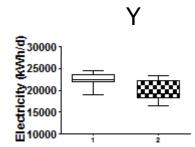

Summer

Winter

COD

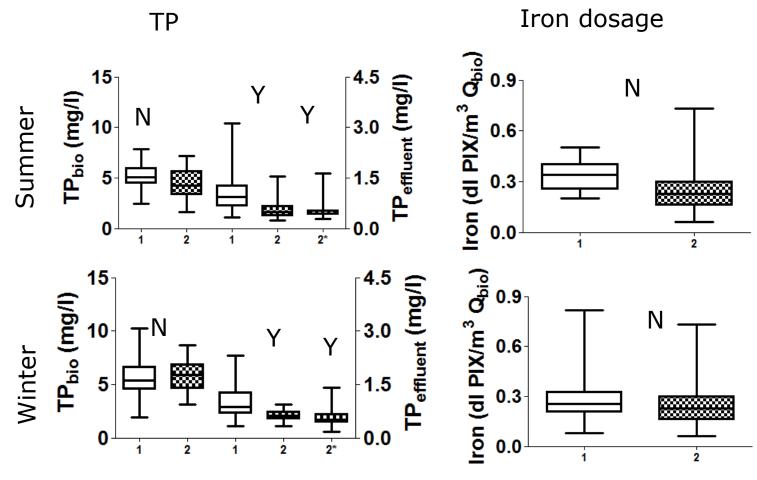






Electricity

consumption



DTU Environment Department of Environmental Engineering

Treatment Efficiency (TP vs Coagulant dosage)

Conclusions

- Hydraulic capacity
 - The beneficial effect of RTC and ATS performance was higher during winter compared to summer especially at $Q_{in} > 150,000 \text{ m}^3/\text{d}$
 - hydraulic capacity increased with up to 150% and 67% of the design capacity during winter and summer
 - However, some overflows occurred even at inlet flows below the design capacity
- Treatment efficiency
 - reductions in the effluent COD (30-50%), SS (30-60%) and TP (40-50%) concentrations both during summer and winter
 - No changes in TN
 - electricity savings (7-12%) mainly due to stopping of mixers

Thank you for your attention

