

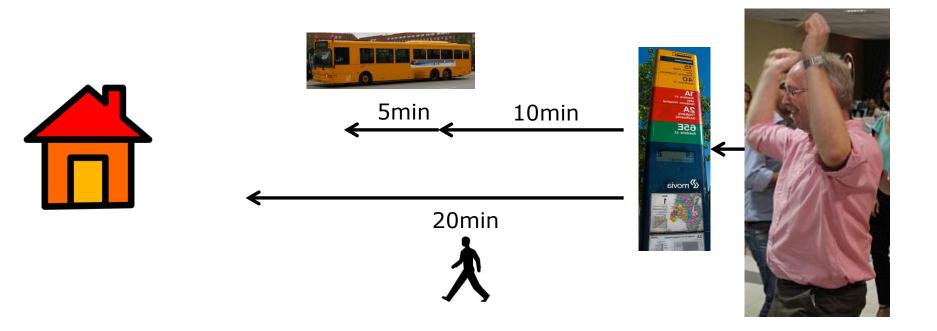
Stochastic runoff forecasting and real time control of urban drainage systems

Ude af øje, ude af sind, ude af kontrol, 13/03/2013

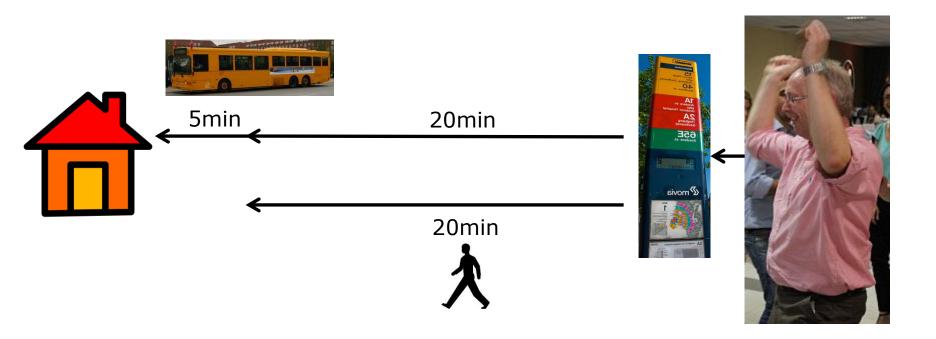
Roland Löwe (DTU Compute) rolo@imm.dtu.dk Luca Vezzaro (DTU Environment / Krüger A/S) Morten Grum (Krüger A/S) Peter Steen Mikkelsen (DTU Environment) Henrik Madsen (DTU Compute)

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}(x)$ **DTU Compute**Department of Applied Mathematics and Computer Science

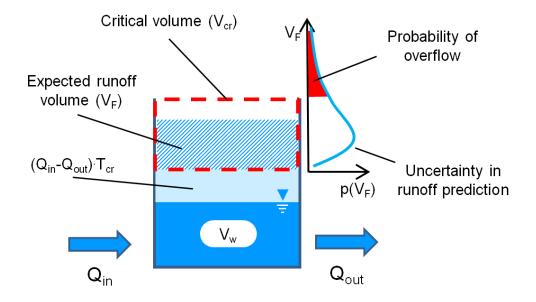
Why do we need probabilistic forecasts? - The way home



Why do we need probabilistic forecasts? - The way home

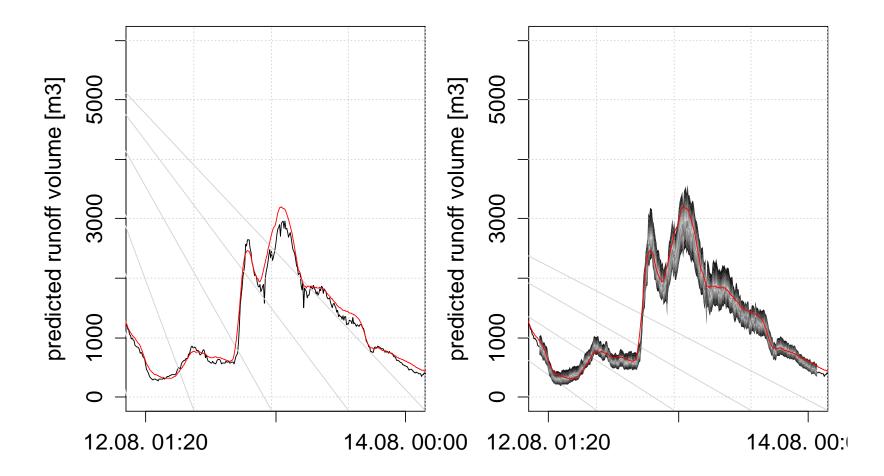


Why do we need probabilistic forecasts? – Stormwater Storage Basins

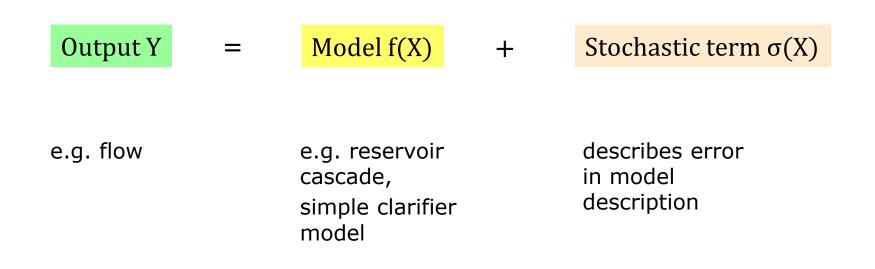


Source: Vezzaro and Grum (2012)

Generating probabilistic forecasts

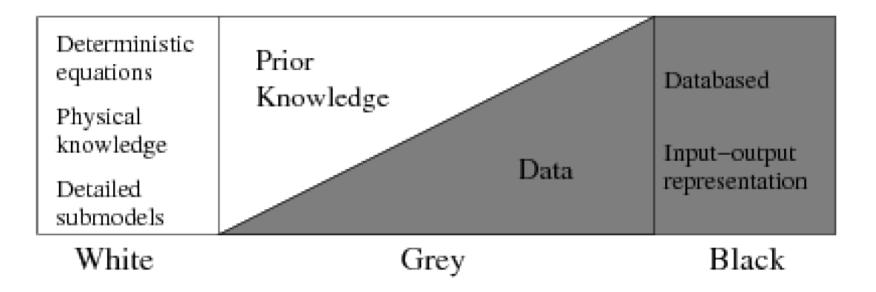


Generating probabilistic forecasts



Generating probabilistic forecasts – The Greybox Modeling Approach

- combines prior physical knowledge with data
- the system is not completely described by physical equations, but equations and parameters are physically interpretable



Generating probabilistic forecasts – Why Greybox Models

vs. white box models

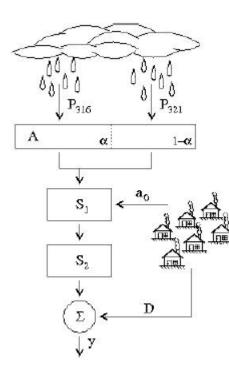
- online applications need simple, fast models for real time operation
- greybox models can be tuned for forecasting
- white box models typically do not account for uncertainty

vs. black box models

- include physical knowledge about the system in the model
- model nonlinear relationships which is not possible e.g. in ARX, ARMAX

• • •

Generating probabilistic forecasts – Runoff Forecasting Models



Graph from Breinholt et al.

(2011)

 $dS_{1} = \left(A \cdot P + a_{0} - \frac{1}{k}S_{1}\right)dt + (\sigma_{1} \cdot S_{1})d\omega_{1} + dS_{2} = \left(\frac{1}{k}S_{1} - \frac{1}{k}S_{2}\right)dt + (\sigma_{2} \cdot S_{2})d\omega_{2}$

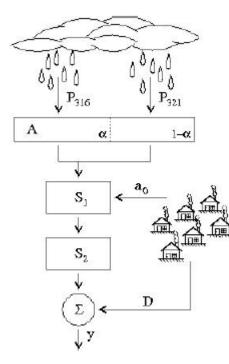
$$Q_t = \left(\frac{1}{k}S_3 + D\right) + \varepsilon_t$$

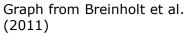
- *A* area parameter
- k time constant
- a_0 mean dry weather flow
- *P* rain input

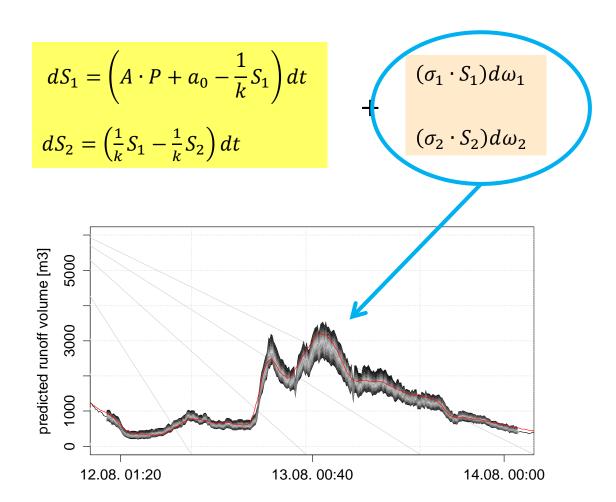
- Q_t observed flow
- *D* dry weather variation

9 DTU Compute, Technical University of Denmark

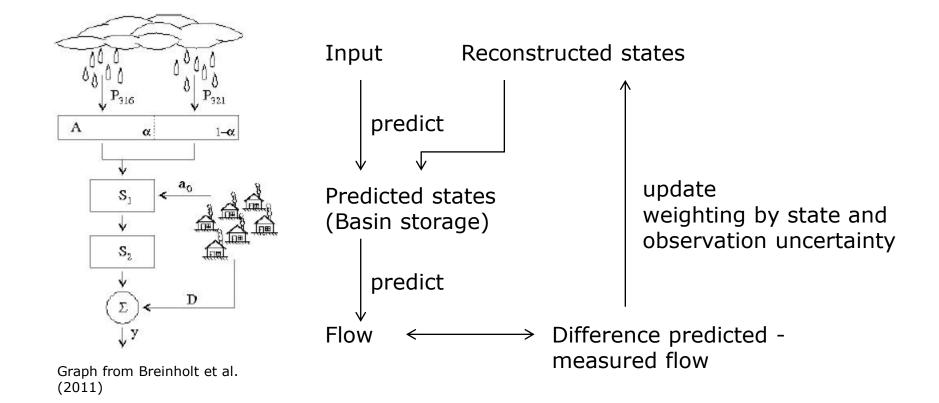
Generating probabilistic forecasts – Runoff Forecasting Models



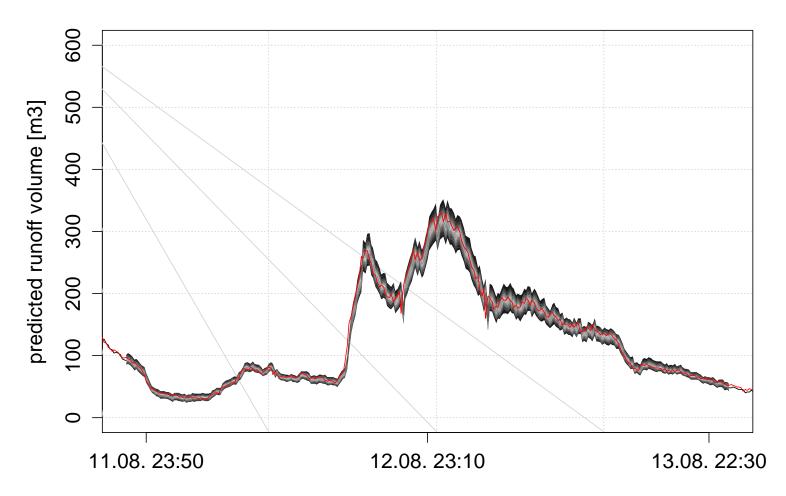




Generating probabilistic forecasts – Runoff Forecasting Models - Updating



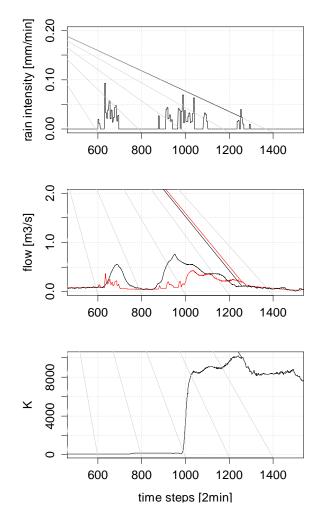
Generating probabilistic forecasts – Runoff Forecasting Models - Updating



Generating probabilistic forecasts – Runoff Forecasting Models - Adaptivity

$$dS_1 = \left(A \cdot P + a_0 - \frac{1}{k}S_1\right)dt + (\sigma_1 \cdot S_1)d\omega_2$$
$$dS_2 = \left(\frac{1}{k}S_1 - \frac{1}{k}S_2\right)dt + (\sigma_2 \cdot S_2)d\omega_2$$
$$dk = 0 dt + (\sigma_4)d\omega_4$$

$$Q_t = \left(\frac{1}{k}S_3 + D\right) + \varepsilon_t$$



Stochastic Greybox Models – Pros and Cons

application range for greybox models

- online applications and forecasting
- quantifying simulation / forecast uncertainty

advantages

- simple, fast models
- state updating models adapt to observations
- flexible framework for modeling forecast uncertainty
- typically better predictions than deterministic model
- adaptivity can be implemented

<u>limitation</u>

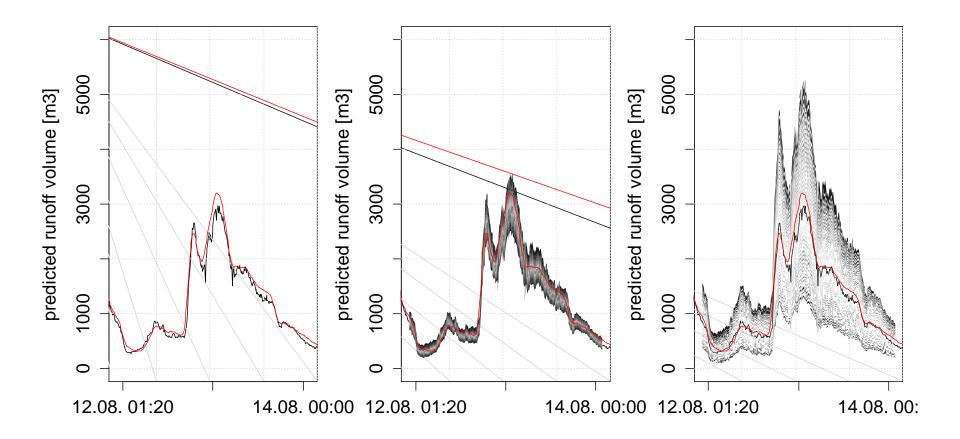
• complex, physical models cannot be handled in the current framework

Stochastic Greybox Models – Software CTSM

CTSM = Continuous Time Stochastic Modeling

- model development, parameter estimation, simulation and forecasting
- developed at DTU Compute
- implement as a package in R ('open source MATLAB')
- download from <u>www.ctsm.info</u> (and <u>www.r-project.org</u> + <u>www.rstudio.com</u>)

Generating Probabilistic Forecasts – What is a good forecast???



Generating Probabilistic Forecasts – What is a good forecast???

reliability

% of observations not included in a 'x %' prediction interval →Requirement

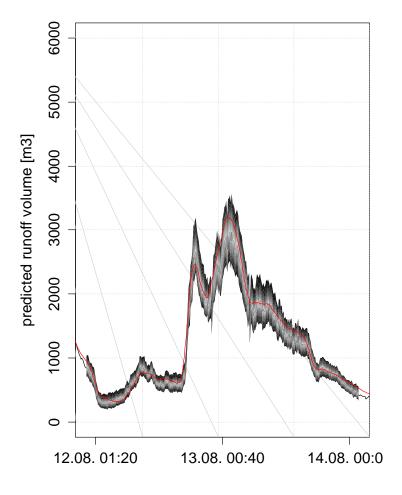
sharpness

width of a 'x %' prediction interval →Minimize

skillscores

(e.g. CRPS – continuous ranked probability score)

→Minimize

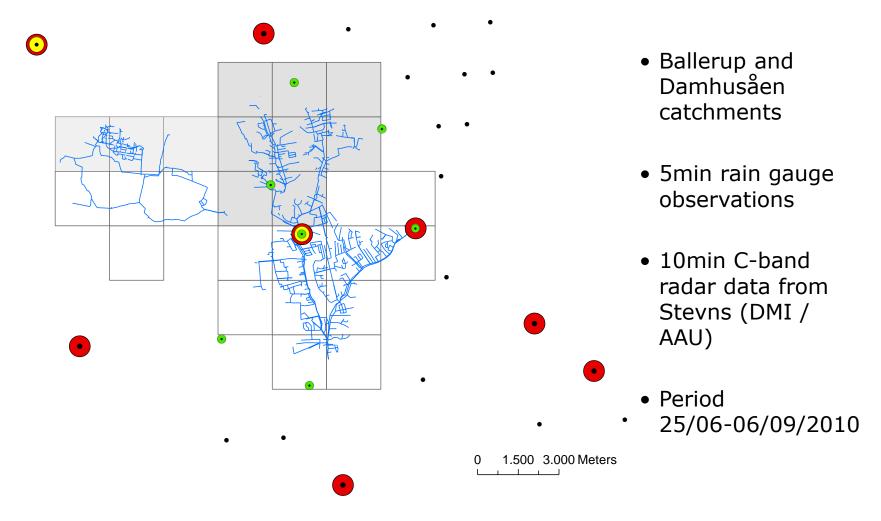


Case Study 1

Value of radar rainfall observations and forecasts for online runoff forecasting

(thank you to Aalborg University and DMI for providing radar data)

Radar rainfall and online runoff forecasting



Radar rainfall and online runoff forecasting – comparing radar and rain gauge input

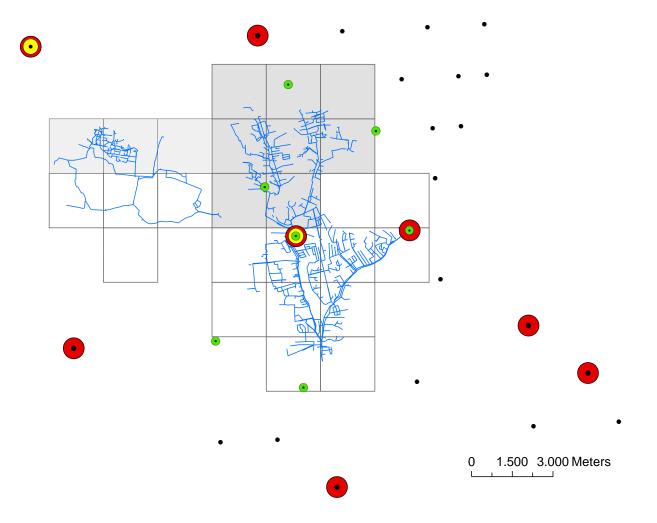
 use mean area rainfall 		Ballerup	Damhusåen
 100min runoff forecasts with different rainfall inputs 	RMSE Raingauge	276.8	3464.1
 using radar rainfall measurements and forecasts reduces error of probabilistic runoff forecasts (compared to input from rain gauges) 	RMSE Radar	260.3	2624.7
	CRPS Raingauge	152.3	1463.3
	CRPS Radar	144.9	1399.1
		ean square e	rror) – average

error of 100min point forecast [m³]

CRPS (continuous ranked probability score)

- average error of probabilistic forecast

Radar rainfall and online runoff forecasting – comparing model complexity



Radar rainfall and online runoff forecasting – comparing model complexity

 use rain gauge input 		Bal
 model 1 – mean area rainfall model 2 – subcatchment model 100min runoff forecasts with 	RMSE model 1	27
	RMSE model 2	26
different model structures	CRPS model 1	15
 accounting for spatial distribution of rainfall in the model improves forecasts 	CRPS model 2	14
model improves forecasts	RMSE (root r	nean s

	Ballerup	Damhusåen
RMSE model 1	276.8	3464.1
RMSE model 2	262.4	2631.3
CRPS model 1	152.3	1463.3
CRPS model 2	146.0	1352.2

RMSE (root mean square error) – average error of 100min point forecast [m³]

CRPS (continuous ranked probability score)

- average error of probabilistic forecast

Case Study 2

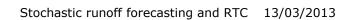
Value of probabilistic runoff forecasts in real time control

(in cooperation with Krüger AS)

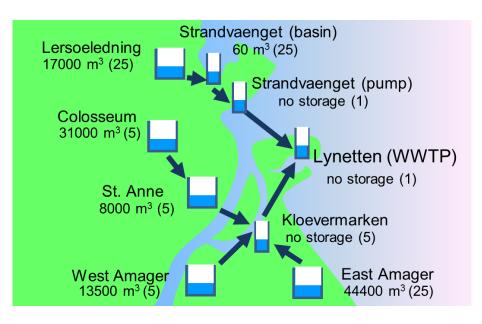
Real Time Control of Stormwater Flows

- dynamic operation of drainage system
- objectives:
 - reduction of combined sewer overflows
 - avoiding flooding
 - ...
- actuators: pumps, valves
- operational examples: Québec, Paris, Dresden

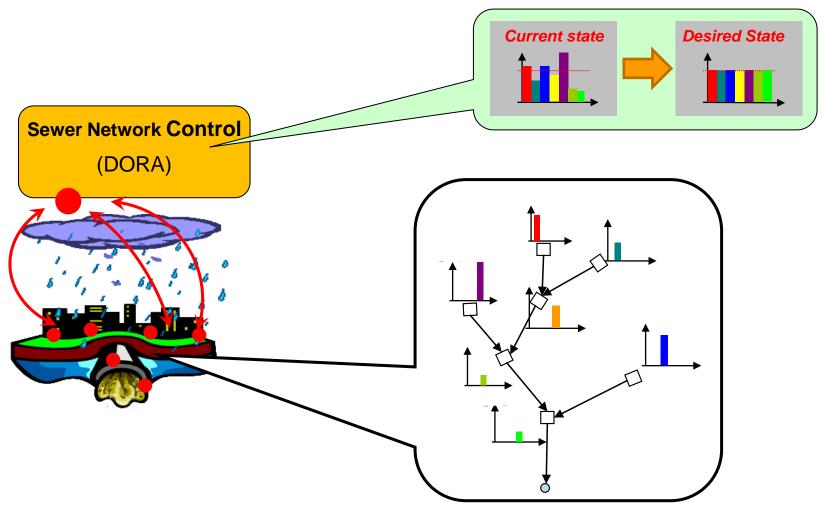
Source: Stadtentwässerung Dresden



The Lynetten Catchment



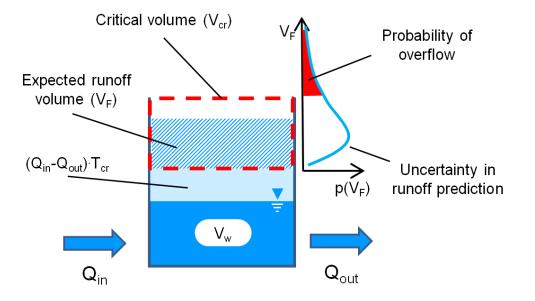
Real Time Control Lynetten Catchment (METSAM project)



Source: Krüger A/S

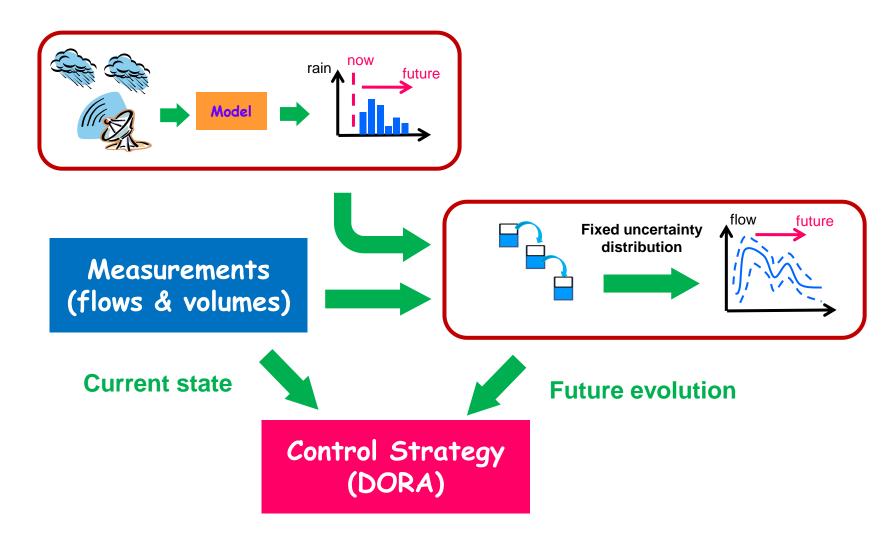
Integrated control strategy (Dynamic Overflow Risk Analysis – DORA)

- runoff forecasts are uncertain
- uncertainty varies
 - between wet and dry weather
 - in the course of events
 - from event to event
- proper decision making requires dynamic quantification of forecast uncertainty

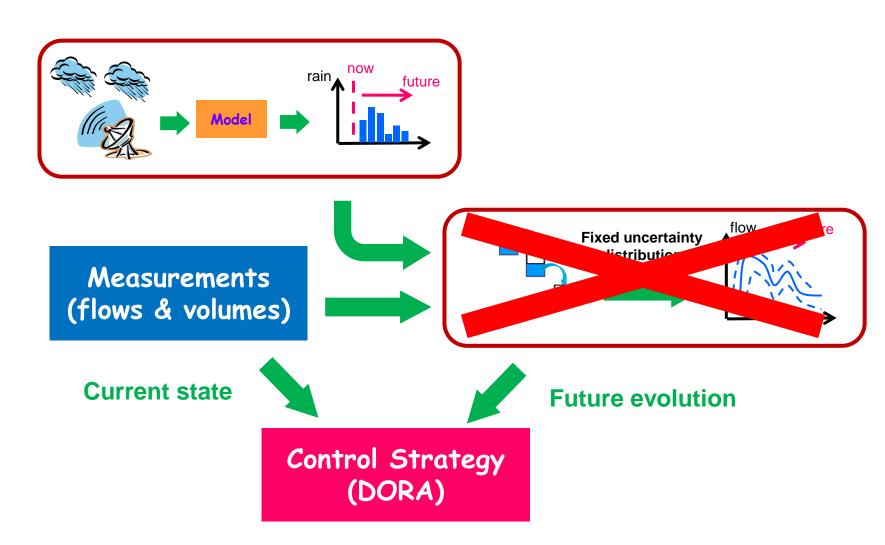


Source: Vezzaro and Grum (2012)

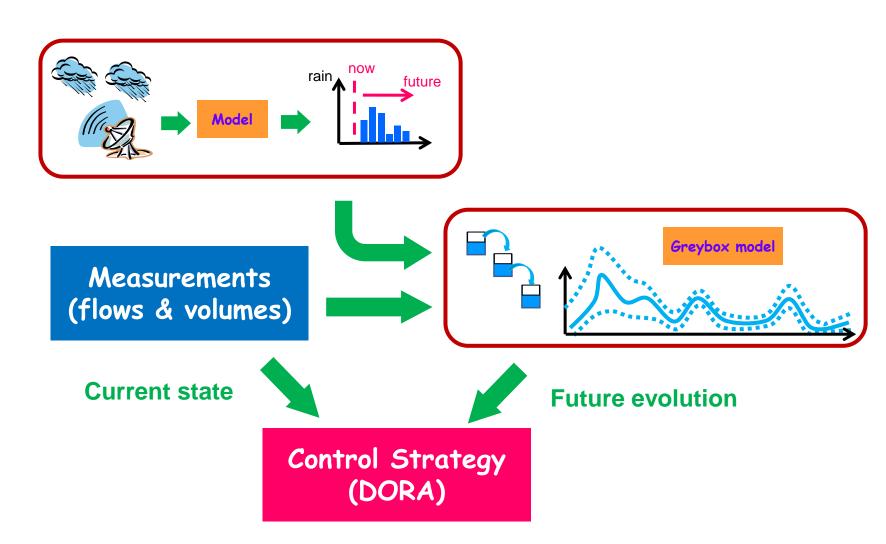
Real Time Control Lynetten Catchment (METSAM project)



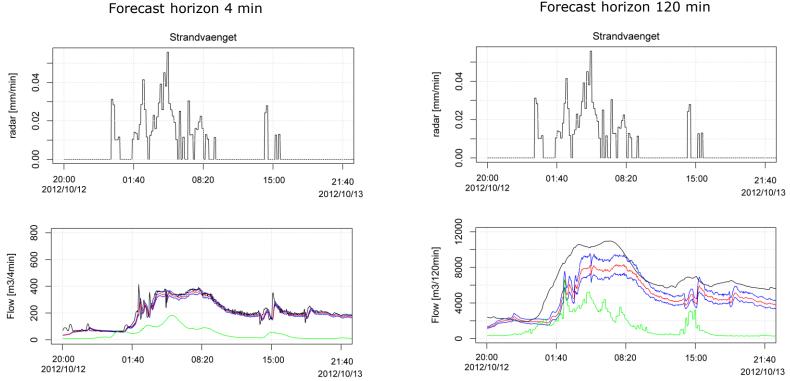
Stochastic runoff models



Stochastic runoff models



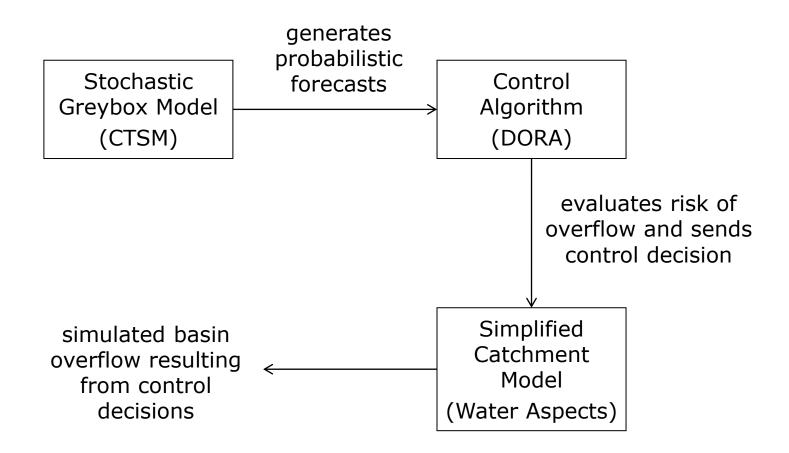
Probabilistic Runoff Forecasting – Example



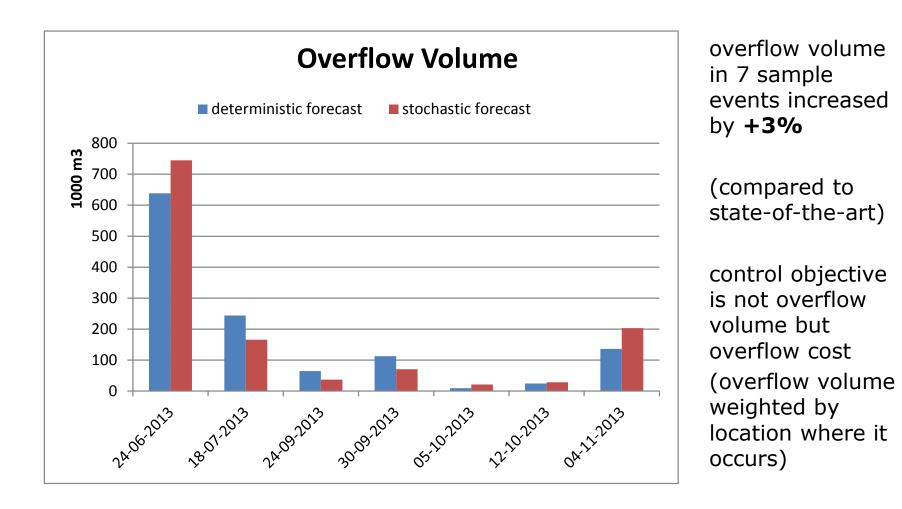
Forecast horizon 120 min

black – observation, green – state of the art deterministic forecast, red / blue – probabilistic forecast with 95% confidence bounds

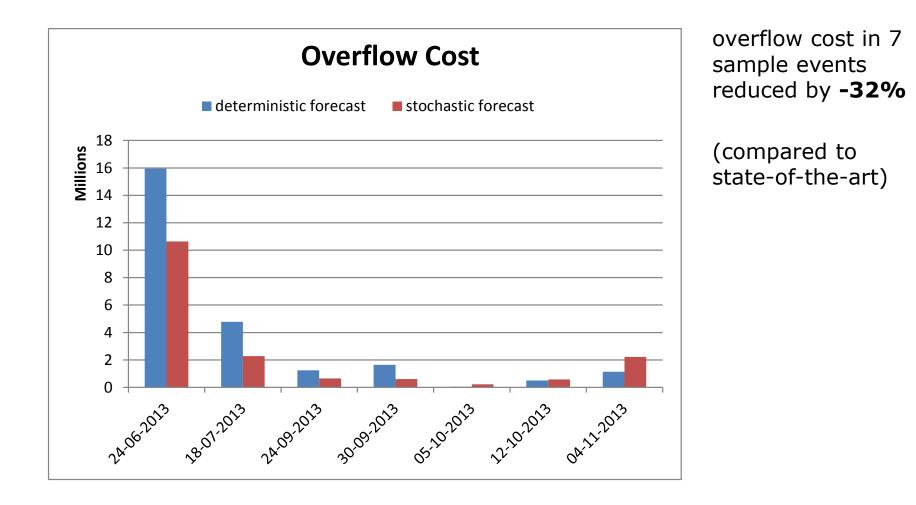
Experimental design



Effect of Probabilistic Forecasts on Real



Effect of Probabilistic Forecasts on Real



Summary

Summary and Outlook

Use greybox models for

- online applications –simple, fast models for real time operation that adapt to online measurements
- quantifying predictive uncertainties

Applications

- runoff forecasting simulation studies indicate improved decisions in real time control
- other applications where forecasts and quantification of uncertainties are required (predicting capacity of secondary clarifiers, predicting TSS)

Future work

- study effect of probabilistic forecasts on real time control in more detail
- model runoff forecast uncertainties depending on rainfall input (rainfall patterns, weather model data)

Thank you!

For further info: rolo@dtu.dk

