Simplification of one-dimensional hydraulic networks by automated processes evaluated on 1D/2D deterministic flood models

Steffen Davidsen, **Roland Löwe**, Cecilie Thrysøe, Karsten Arnbjerg-Nielsen

DTU Environment Department of Environmental Engineering

Purpose

- obtain stable 1D-2D model and reduce simulation times
- work towards standardized way of model reduction
- document effects on simulation results

Algorithm – Trim vs. Merge

Trim

Merge

Algorithm – Flow Chart

Algorithm – Travel Time Compensation

 $v = M \cdot R_h^{\frac{2}{3}} \cdot S^{\frac{1}{2}}$ velocity in deleted pipe

IF
$$v < 0.15 \frac{m}{s}$$
 $v = \max(v_{upstream}, 0.15 \frac{m}{s})$

Apply travel time as delay on the rainfall input for each catchment (in increments of 2min)

Algorithm – Volume Compensation

Compute volume of deleted nodes and pipes

Increase downstream node diameter

$$D_{new} = \sqrt{\frac{V_{node} + V_{deleted}}{h_{node} \cdot \pi}}$$

Technical Implementation

- Python Code
- Perform simplification on arrays describing the network structure
- Update the MIKE Urban database to match the simplified structure
- Update the 1D-2D coupling file

Case

- Elster Creek Catchment
- 45km², ~100,000 households
- stormwater network with outlet to the sea, modelled in MIKE 2014 FM
- 11,000 pipes, mesh with 415,000 faces (10x10m)
- simplification takes ~1 minute

Results – Computation Time

Results - Hydrographs

Especially merging leads to higher peaks:

- fewer nodes → higher water levels in the system → faster flow?
- smaller energy losses when removing manholes?

Results – Flow $1D \rightarrow 2D$ (2 year event)

Baseline, T100

merged

Water Depth [m]

HitFalse positiveMissNo Flooding

Results- Flooded Area

Results - Flooded Area

Results - Expected Annual Damage (EAD)

from: SVK Skrift 31

Results - Expected Annual Damage (EAD)

Conclusions

- 1. 1D simplification had quite significant impact on simulation times (in a model with coarse surface resolution...)
- 2. Trimming affects flooded areas strongly
- 3. Somewhat higher peak flows when merging pipes
- 4. Little effect from travel time and volume compensations. Increased node diameter leads to large flows from 1D to 2D model.

https://gitlab.gbar.dtu.dk/users/rolo/projects

(tools for flood damage calculation, coupling 1D-2D models, parsing ERF files, 1D network simplification + clipping MU models released under GNU GPLv3)

Davidsen, S., Löwe, R., Thrysøe, C., and Arnbjerg-Nielsen, K. (2017) Simplification of one-dimensional hydraulic networks by automated processes evaluated on 1D/2D deterministic flood models. Journal of Hydroinformatics, accepted.