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Distributed models 

Mike Urban model 
of Avedøre WWTP catchment 
 

1707 sub-catchments 
6601 Manholes 
7749 Pipe sections 
40 Pumps 
40 Basins 

 

5 km 



Why online distributed  
models? 

We have the models 
Best system description we have 
Can tie all system data together 
Water on terrain, status of gauges, 
 pollution fluxes  

 

5 km 



Existing DA-metods for MIKE URBAN 
Deterministic local updating: MOUSE UPDATE 

Water levels at single points are corrected 
 
Deterministic upstream updating: RDII updating 

Upstream hydrological lumped conceptual models are updated 
 
 

No Hydrodynamic global updating method exists 



Optimal updating of distributed models 

N states -> NxN crosscorrellations 
 (States in MIKE URBAN models: 104–106   

-> 108–1012 crosscorrelations) 
 

Minimizing the error from gauge and model uncertainty 
Correction is distributed from calculated/expected spatial 
correlation 



z 

Kalman Filter 
q 

Value 

Best estimate of s knowing z:   𝑠 = �̂� + 
𝜎𝑠,𝑞

𝜎𝑞2
(z − q) 

s=x1 

𝜎𝑞2 
𝜎𝑠,𝑞 

𝜎𝑧2 

When z is uncertain:     𝑠 = �̂� + 
𝜎𝑠,𝑞

𝜎𝑞2+𝜎𝑧2
(z − q) 

When s is part of vector x:    𝒙 = 𝒙� +    𝐾(z − q) 

𝑥 =
𝑥1
𝑥2
𝑥3

 

6 

Kalman gain K  determine 
Δ𝑥1/Δε
Δ𝑥2/Δε
Δ𝑥3/Δε

  

x3 x2 s 



z 

Kalman Filter 
q 

Value 
s=x1 

𝜎𝑞2 

𝜎𝑧2 

x3 x2 

Error covariance is the cornerstone of KF 

Estimated by KF using full error covariance matrix P 

This requires: 

1. Normal distributed Errors (including any input uncertainty) 

2. Linearity 

3. Limited number of states  (size of P = n*n) 

𝜎𝑠,𝑞 

𝑷 =
𝜎𝑥12 𝜎𝑥1,𝑥2 𝜎𝑥1,𝑥3

𝜎𝑥2,𝑥1 𝜎𝑥22 𝜎𝑥2,𝑥3

𝜎𝑥3,𝑥1 𝜎𝑥3,𝑥2 𝜎𝑥32
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Ensemble Kalman Filter  
q 

Value 

Ensembles of models used to represent state uncertainty 

Xi,3 Xi,2 Xi,1 

X1 
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Ensemble Kalman Filter   
q 

Value 

Ensembles of models used to represent state uncertainty 

Covariance can be calculated directly from ensemble: 

  

 

No need for full covariance matrix for finding K 

 

Xi,3 Xi,2 Xi,1 

X4 
X5 

X1 
X2 

X3 

 σ1,3  =  
1

𝑁 − 1�(𝑋𝑖,1 − 𝑋,1)(𝑋𝑖,3 − 𝑋,3)
𝑁

𝑖
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Ensemble Kalman Filter   
q 

Value 
Xi,3 Xi,2 Xi,1 

𝜎𝑧2 z 

EnKF step-by-step 

1.Calculate K using the relevant covariances from ensemble 

2.Correct each ensemble member using K(observed-modelled) 

K 
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Ensemble Kalman Filter   
q 

Value 
Xi,3 Xi,2 Xi,1 

𝜎𝑧2 z 

EnKF step-by-step 

1.Calculate K using the relevant covariances from ensemble 

2.Correct each ensemble member using K(observed-modelled) 

3.Run model until next measurements arrives 

K 
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EnKF vs. KF  

• EnKF 
Computational efficient for LARGE models 
Can handle any kind of noise 
Handles non-linearity 

• KF 
If gauss-linearity then much more efficient for not 
too big models 
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EnKF vs. KF  

• Uncertainty descriptions 
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Testing EnKF 

• 2010 flow data from 
Ballerup 
 

• Simple 3 linear reservoir WA 
model 

• Only noise on first reservoir 
(state proportional) 

• Std. measured flow = 10% 
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0.5 h 

2.5 h 

2.5 h 



Ballerup 2010 

Measured and 
modelled flow 
when no update 
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EnKF (N=50) 
Measured and 
modelled flow 
when no update 
+ 
One step 
prediction from 
using EnKF 
including 95% 
prediction interval 
 
Number of 
ensemble 
members N = 50 
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EnKF (N=5) 
Measured and 
modelled flow 
when no update 
+ 
One step 
prediction from 
using EnKF 
including 95% 
prediction interval 
 
Number of 
ensemble 
members N = 5 
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Kalman gain K for different N 
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K for first (red) and 
second (blue) 
reservoirs. 
 
Kalman gain K much 
more stable when N 
is high. 
 
 
 

N=50 

N=5 



EnKF and MU 
1. Distributed models tend to be big 
2. And non-linear 
3. Ensembles of distributed rain estimates 
Challenges 
1. Manipulation of governing equations        

(St. Venant eq.) 
2. Slow hydrological response time  

 
 

 
 

 
 

 
 



Updating MIKE URBAN 

• New computational engine (Mike1D) 
• Interface to states (h and Q) 
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𝑥 =

𝑥1
𝑥2
𝑥3
.
. .

 



Example of water level only update in  
MIKE URBAN 
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Rapid change of H means Q-H 
relationship  instantaneously changed 
-> large gradients ->instability ?? 



Summary 

Ensemble based data assimilation methods are 
suitable for urban runoff 
 
The states in the new MIKE URBAN 
hydrodynamic engine can be manipulated 
without instability 
 
HD data assimilation for MIKE URBAN is on the 
way 
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Questions 
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