

Modelling of water quality in sewer-WWTP systems during normal and extreme conditions

Period : Oct 2010 - Sep 2013

PhD student: Elham Ramin Supervisor: Benedek Gy. Plósz (DTU Miljø) Co-supervisors: Peter Steen Mikkelsen (DTU Miljø) Michael R. Rasmussen (Aalborg University) Lars Yde (DHI) $H_{2}0+0_{2} \leq C0_{2}+H_{2}O_{a}$

Introduction

Introduction

Modelling of Secondary Settling Tanks

1.8594e-6

1-D Secondary settling tank models

$$-\frac{\partial X_{TSS}}{\partial t} = U \frac{\partial X_{TSS}}{\partial z} - \frac{\partial (v_s X_{TSS})}{\partial z}$$

Takács et al. (1991)

1-D Secondary settling tank (SST) models

$$-\frac{\partial X_{TSS}}{\partial t} = U \frac{\partial X_{TSS}}{\partial z} - \frac{\partial (v_s X_{TSS})}{\partial z} - D_C \frac{\partial^2 X_{TSS}}{\partial z^2}$$

Takács et al. (1991)

1-D Secondary settling tank (SST) models

$$-\frac{\partial X_{TSS}}{\partial t} = U \frac{\partial X_{TSS}}{\partial z} - \frac{\partial (v_s X_{TSS})}{\partial z} - D_C \frac{\partial^2 X_{TSS}}{\partial z^2}$$
$$v_s = v_0 \left(e^{-r_H (X - f_{NS} \cdot X_F)} - e^{-r_p (X - f_{NS} \cdot X_F)} \right)$$

1-D Secondary settling tank model parameters

$$-\frac{\partial X_{TSS}}{\partial t} = U \frac{\partial X_{TSS}}{\partial z} + \frac{\partial (v_s X_{TSS})}{\partial z} - D_C \frac{\partial^2 X_{TSS}}{\partial z^2}$$
$$v_s = v_0 \left(e^{-r_H (X - f_{NS} X_F))} - e^{-r_p (X - f_{NS} X_F)} \right)$$

Measurable parameters: (Settling Characteristics)

DTU Environment

1-D Secondary settling tank model parameters

$$-\frac{\partial X_{TSS}}{\partial t} = U \frac{\partial X_{TSS}}{\partial z} + \frac{\partial (v_s X_{TSS})}{\partial z} - O_C \frac{\partial^2 X_{TSS}}{\partial z^2}$$
$$v_s = v_0 \left(e^{-r_H (X - f_{NS} \cdot X_F)} - e^{-r_p (X - f_{NS} \cdot X_F)} \right)$$

Measurable parameters: (Settling Characteristics)

DTU Environment

Calibrated parameter: (Design&flow Characteristics)

15/03/2013

Phase I. Global sensitivity Analysis

Objective

Show the **significance** of explicit **model parameters and dynamic behavior** of **1-D secondary settler models** on the biokinetic model **prediction in WWTP models**

Relative importance of secondary settling tank models in WWTP simulations – A global sensitivity analysis using BSM2

Elham Ramin, Xavier Flores-Alsina, Gürkan Sin, Krist V. Gernaey, Ulf Jeppsson, Peter Steen Mikkelsen, Benedek Gy. Plósz*

Phase II. Fluid dynamics in secondary settling tanks (CFD simulations)

Objective

To generate **numerical experimental data** sets using transientto-steady-state (and, if possible, dynamic) CFD simulations for secondary settling tanks with **different design and flow boundary conditions**. We then use the obtained data sets to **optimize and calibrate 1-D secondary settling tank models**.

1. Sub-model optimization and calibration

14 **DTU Environment, Technical University of Denmark**

2. CFD simulation of the settling tank

Lundtofte WWTP, Clarifier number 3

Lundtofte WWTP, Clarifier number 3

3. Model evaluation

Measurement campaign on a full-scale secobdary settling tank

TSS and velocity sensors used for profile measurements

Measured vs. simulated profiles

Normalized height

Normalized height

4. Creating an inventory of CFD simulations

In terms of design and flow boundary conditions

Phase III. optimize and calibrate 1-D secondary settling tank models

Objective

A more **mechanistic** way for hydrodynamics modeling in 1-D that could account for **different design and flow** boundary conditions

1-D model optimization

Approach I: calibrate dispersion, downward convection and dynamic-feed layer position models to account for different clarifier design.

Approach II: Testing theories that could unify 1-D hydrodynamic model calibrations obtained for different SST structure

Thank you!

